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 Introduction

 Resources for the study of ancient Egypt are easily available,
 for all levels of education. But the teacher who is interested

 in its northern neighbours in Mesopotamia is hard pushed to
 find anything other than undergraduate textbooks. And if
 that teacher is particularly interested in Mesopotamian (more
 often called Babylonian) maths, there is less still. The activi-
 ties described here are an attempt to redress that balance,
 based on original research and ancient artefacts, and on
 several workshops run in recent years. They can be adapted
 for use with many different groups, from primary school
 children upwards, for a variety of mathematical and numeri-
 cal topics.

 Mesopotamia, 'the land between two rivers', more or less
 covers the area of modern Iraq (see Fig. 1). It was home to a
 series of complex and influential civilizations-Sumerian,
 Babylonian, Assyrian-over a span of three thousand years,
 until its gradual demise through repeated conquests by the
 Persians, Greeks, and Parthians in the second half of the first
 millennium BC (see Fig. 2). What the great Mesopotamian
 cultures all had in common was a complicated syllabic
 wedge-based, or 'cuneiform', script, with which trained
 scribes wrote on clay tablets. These were for the most part
 the humdrum administrative documents which large institu-
 tions continue to generate today: memos, receipts, wage
 records, and the like. But more exciting texts survive too,
 including magical rituals, law codes, vivid descriptions of
 military campaigns and battles, and great myths such as the
 Epic of Gilgamesh. Because clay, unlike papyrus or paper, does
 not decay, hundreds of thousands of tablets survive, from
 many different periods and places in Mesopotamia, allowing
 for an unprecedentedly detailed view of some aspects of its
 history-assuming, that is, the historian does not get over-
 whelmed by the sheer quantity of them all.
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 Fig. 2 Timeline of mathematics in the Near East
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 All of these works, from dockets to literary epics, were
 written in the now long-dead languages of Sumerian (which
 has no known linguistic relatives) and Akkadian (from the
 same language-family as Hebrew and Arabic), or a combina-
 tion of the two. Because the cuneiform script used to write
 these languages was highly complex, literacy was confined to
 a professional body of trained scribes. Their education natu-
 rally contained a large component of numeracy and mathe-
 matics, and many of their educational materials, particularly
 from the early second millennium BC, or 'Old Babylonian
 period', have survived. They form the basis of our under-
 standing of what most modern textbooks call 'Babylonian'
 mathematics. The Old Babylonian base 60, or 'sexagesimal',
 place-value system survived long after the demise of Mesopo-
 tamian civilization in the records and calculations of the

 Classical, Islamic, Indian, and early modern European
 astronomers. It is the distant ancestor of the modern division

 of the hour and the degree of arc.
 There are two parts to the material presented here: back-

 ground information for the teacher, followed by suggestions
 for classroom activities. These try to recreate the experiences
 of the trainee scribes, as they learned to record cuneiform
 numerals in clay, and to perform the basic arithmetical
 operations. There are many aspects of scribal school life we
 still know nothing about-how long schooling lasted, how
 old the pupils were, criteria for entering and leaving scribal
 school-and others we can only guess at-the size of the
 classes, the order of the curriculum, the sort of people who
 went to school. Much of what follows, then, is based on
 hypothesis and disparate pieces of research published in
 obscure specialist journals. While there is a list of recom-
 mended reading and resources at the end, be warned that
 there is (at least not yet) no easy way in to this subject.

 Writing Cuneiform Numerals
 For each child you will need a generous handful of plasticine
 or modelling clay and a stylus. The Mesopotamian scribes
 used lengths of reed. I make my own with quadrant dowelling
 bought from a DIY superstore, cut it up into 6-inch lengths
 and sand the ends to remove splinters. Cheap wooden chop-
 sticks are just as good, or lengths of square-sectioned garden
 canes. But it doesn't really matter what you use, as long as it
 is comfortable to hold like a pencil, and it has a right-angled
 corner at the business end.

 Fig. 3 Writing a cuneiform tablet

 Making cuneiform wedges uses a very different technique
 to writing on paper, because the end result is a three- not
 two-dimensional object. For a start, you need to hold the
 lump of clay in your hand and not flatten it out onto a table.
 Because you can move both tablet and stylus it makes no
 difference whether you are left- or right-handed. Hold the
 stylus no more than about 30' to the surface of the clay, with
 a long edge pointing downwards. Press the end of that edge
 (about 5-10 mm), corner first, into the tablet and lift up
 again, without rotating or dragging the stylus. You will be left
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 with a long narrow triangular impression, with the deepest
 point near the narrow side (the 'head') and the shallowest at
 the apex of the triangle (the 'tail') (Fig. 3). A single wedge
 with the tail pointing to the reader represents the numeral 1.

 The 10 numeral is written at a 30-45' anticlockwise angle
 to the 1-you can turn the tablet or stylus or both-and with
 the hand rotated so that the flat surface of the stylus to the
 right of the long edge makes much more contact with the clay.
 Approximately equal lengths of the top edge and the long
 edge are impressed, so that the wedge looks like a symmetrical
 arrow-head pointing left (Fig. 3). As your technique im-
 proves-and I strongly suggest you practise before introduc-
 ing cuneiform to your class-you will be able to make smaller
 and more elegant wedges, however large the stylus is. The
 unit wedge is repeated in up to three rows of three marks to
 form the numerals 2-9; the ten is aligned diagonally in threes
 to write 20, 30, 40, and 50 (see Fig. 4).

 one two three four five

 ff Ir I
 six seven eight nine

 ten twenty thirty forty fifty

 Fig. 4 The sexagesimal numerals 1-9 and 10-50

 The Sexagesimal Place Value System
 These numerals can be combined into a place value system,
 with the larger places ranged to the left of the smaller. Thus
 the units can in fact represent any power of sixty: 1 x 60",
 where n is any integer; and the tens may stand for any 10 x
 60". Thus 4 tens to the left of 5 units could be read as 45, or
 45 x 60 = 2700, or 45/60 = 3/4, or 45 times any power of sixty,
 as big or as small as we like. Conversely, 4 tens to the right of
 5 units could be read as 5 + 40/60 = 5 2/3, or 5 x 60 + 40 =
 340, or 5/60 + 40/3600 = 1/12 + 1/90 (0.09444), or 5 x 3600
 + 40 x 60 = 20,400, etc. In modern transliteration the
 'sexagesimal point' is marked with a semicolon and a space
 separates each power of sixty (see Fig. 5).

 45/60 = 3/4 or 0;45
 45

 45x60 = 2700 or 45 00

 5/60 + 40/3600 0.944 or 0;05 40
 5 + 40/60 = 5 2/3 or 5;40
 5x60 + 40 = 340 or 5 40

 5x3600 + 40x60 = 20,400 or 5 40 00

 Fig. 5 45 x 60n and 5;40 x 60n

 Although we show zeros in transliteration there is no
 cuneiform sign for zero, in any of its roles. There was no need
 to mark single empty tens or unit places. To show a com-
 pletely empty sexagesimal place with no tens or units-to
 distinguish 602 = 10 02 from 12, say-the scribes just left a
 space on the tablet. In later times a space marker of two small
 tens wedges above each other was adopted (see Fig. 6). But

 3
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 12 10 02 10 02
 or 602 or 602

 before after
 1600 BC 1600 BC

 Fig. 6 Ways of marking medial zero

 there was no way at all to show absolute value: no equivalent
 of the zeros after the decimal point or at the right hand side
 of number which we use to indicate the size of a number. This
 could be seen as a major flaw in an otherwise elegant,
 minimalist and efficient calculation scheme, but is explicable
 in the light of its restricted function: the sexagesimal place-
 value system was used solely for professional calculation.

 Ancient School Arithmetic

 Various absolute-value systems had been used to record
 everyday counting and measuring since proto-historic times
 (see Fig. 7). Rather like the pre-metric metrological systems
 of Europe and north America, they used a mixture of units-
 30 fingers in a cubit, 12 cubits in a rod, for instance (see
 Fig. 8)-which were inevitably complicated to manipulate
 arithmetically. For this reason, the scientific sexagesimal

 one ten sixty hundred six hundred thousand

 three thousand thirty-six two hundred and
 six hundred thousand sixteen thousand

 Fig. 7 Absolute number notation in cuneiform

 Length

 1 finger - 5/3 cm

 30 fingers = 1 cubit - 50 cm

 12 cubits = 1 rod - 6 m

 60 rods = 1 chain - 360 m

 30 chains = 1 stage - 10.8 km

 Weight

 1 barleycorn - 45 mg

 180 barleycorns =1 shekel - 8.3 g

 60 shekels = 1 mina - 0.5 kg

 60 minas = 1 talent - 30 kg

 Area

 1 grain - 11 sq cm

 180 grains = 1 shekel - 0.2 sq m

 60 shekels = 1 garden = 1 rod x 1 rod - 36 sq m

 100 gardens = 1 plot - 3,600 sq m

 Fig. 8 Some Mesopotamian weights and measures

 system was invented, some time around the end of the third
 millennium BC, to shortcut the complicated procedures
 needed for multiplication and division in particular. It is
 difficult to pinpoint exactly when this happened because it
 was intended-and used-merely as an aid to computing,
 and results were converted back into everyday measure again.
 Thus we find the sexagesimal place-value system used only
 in school tablets whose point was to train scribes in its use,
 or on professional documents from which the (trained) scribe
 had omitted to erase his rough work.

 We can see the workaday-scientific-workaday conversion
 principle at work in several school pupils' exercises from the
 ancient city of Nippur. In the example shown (Fig. 9), the
 problem is set in the bottom right hand corner, and the
 remains of the rough work are shown at the top left. The text,
 in Sumerian with a loose and a literal translation, reads:

 2 shu-si ib-sis8

 a.shi-bi en-nam
 a-shi-bi igi-

 3-gil she-kam

 The side of a square
 is 2 fingers.

 What is its areaa
 Its area is a third of

 a grain.

 2 fingers square-side

 area.its what.is

 area.its third grain.is

 The syllables of the writing system do not always correspond
 to grammatical particles. Sumerian is still badly understood,
 as it is related to no other known language, lexically, phoneti-
 cally, or grammatically and has to be interpreted for the most
 part through the filter of other long-dead languages such as
 Akkadian. Technically, it is classified as an agglutinating
 ergative isolate.

 The first stage in our calculation is to convert the length
 measured in fingers into a sexagesimal fraction of the stand-
 ard length unit, the rod (see Fig. 8).

 2 fingers = 2/30 = 0;04 cubits = 0;04 - 12 rods = 0;00 20 rods.
 Traces of this resulting 20 can just be seen at the edge of the
 break on the top left of the tablet. A second copy of the 20 is
 written immediately underneath, so that it can be multiplied
 with itself to get the area of the square, measured in 'gardens':

 0;00 20 x 0;00 20 x 0;00 00 06 40 'gardens'.

 We can then multiply this product by 60 (shekels in a
 'garden') and 180 (grains in a shekel) to get 0;20 grains of
 area-the answer given on the tablet.

 So, we can see that the sexagesimal numbers are used only

 4

 Fig. 9 A metrological calculation
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 Obvemte.  Reverse.

 2 times 1 2

 times 2 4
 times 3 6
 etc.

 6

 to: 10
 times 11 22

 15

 to

 times 12 24
 etc.

 to:

 times 19 38
 times 20 40
 times 30 1 00
 times 40 1 20
 times 50 1 40

 a-rd "times"

 There are multiplication tables for:
 50 48 45 44 26 40

 20 18 1640 16
 8 730 712 7
 320 3 230 224

 40 36 30 25 24 22 30

 15 1230 12 10 9 820
 640 6 5 430 4 345
 215 2 140 130 120 115

 Fig. 10 A multiplication table, front and back

 in the workings and not shown in the final answer. In other
 words, their absolute value is not important as long as the
 scribe is sensible about the size of answer he expects-rather
 as we ignore decimal points during the intermediate steps of
 long multiplication and long division.
 To help them in their arithmetic the trainee scribes learned

 a large standard set oftables, first for converting between base
 60 and the various metrological systems and then for multi-
 plication (Fig. 10) and division-which involved finding the
 sexagesimal reciprocal of the divisor and then multiplying

 (Fig. 11). They learned first by copying a teacher's model and
 then by repeated writing until they had the tables off by heart.
 Many hundreds of these practice copies have survived, espe-
 cially from Nippur. The tablet may contain just one single
 table or anything up to the whole standard set. There is often
 a non-mathematical school exercise on the other side of the

 tablet. We also have examples of arithmetical rough work
 created as the students solved word problems. Typically they
 involve repeated multiplications and divisions of one- or
 two-place sexagesimal numbers (see Fig. 12). The evidence

 igi-n-gel-bi 11n "The reciprocal of n is 1/7"

 "2/3 of 1 is 40

 Its half is 30"

 3 20

 4 15

 5 12

 6 10

 8 730

 9 640

 10 6
 to

 12 5

 15 4

 16 345

 18 320

 20 3

 ts

 20

 25

 24 230

 25 224

 27 21320

 30 2

 32 1 5230

 36 140

 40 1 30

 45 120

 48 1 15

 50 1 12

 54 1 06 40

 1 1

 104 5615

 1 21 46 26 40

 "Its half"

 Fig. 11 A standard reciprocal table

 5

 x2 =10
 x3 =30

 -10
 (orx 0;06) =3

 x2 =6

 Fig. 12 A school exercise in repeated multiplication and division

 Mathematics in School, September 1998  5

This content downloaded from 
�������������202.47.36.85 on Sun, 14 Nov 2021 14:31:31 UTC�������������� 

All use subject to https://about.jstor.org/terms



 now is that arithmetic was taught in the third phase of the
 elementary curriculum at Nippur. Sadly, though, we still
 know nothing of how old the students were at the time, or
 how long this or any other part of thei schooling took.

 Modern Classroom Activities

 These suggestions for classroom activities are in the form of
 photocopiable work cards, with selected outline answers
 given below. Clearly not all the topics suggested here will be
 appropriate for your pupils, and you will almost certainly
 want to create your own alternatives to my suggestions and
 to add greatly to the numerical examples.

 Selected outline answers to the work cards

 1. The pattern is three rows of three. Modern numerals are further
 abstracted from their associated number; you couldn't tell from looking
 at them which numeral they represent if you didn't already know. Clay
 was abundant and cheap, paper not yet invented, and papyrus grew only
 in Egypt. Methods of recording number include keeping tallies, using
 accounting tokens, pebbles or shells, knotted strings (quipus), electrical
 pulses (computers), etc.

 2. We still count minutes and seconds of time and angle in sixties. We also
 count in pairs, dozens, reams, etc. We can't write six tens because we
 have to move up a sexagesimal place. Use the 1 sign again, to the left of
 the tens.

 3. There is no 'largest number' in cuneiform. We leave a space between
 the 1 and 2 signs to distinguish 62 from 3.

 4. The Mesopotamians thought that 'nothing' on the tablet was a sensible
 representation of zero. They had to simply remember 'medial zeros',
 until the sign shown in Work card 5 was invented.

 5. Some fractions (with divisors other than 2, 3, 5) are non-terminating.
 We can therefore only write approximations to them.

 6. Work out 3 x 1 00, x 30 and x 4, and add. Or add 3 x 100, x 40 and
 subtract x 6, etc.

 7. Scribes needed multiplication to work out areas and volumes of all sorts,
 to calculate wages and interest, to estimate crop yields, etc.

 8. The left-hand numbers increase as the right-hand ones decrease; all
 numbers are sexagesimally regular (i.e. they have factors of 2, 3, and 5
 only); left-hand numbers are integers 1-60 plus squares of 8 and 9 (other
 squares 1-10 are already included); none in right-hand column has
 more than three sexagesimal places, etc. Irregular numbers such as 7
 are omitted. There are a total of 64 one-, two-, and three-place pairs of
 sexagesimal reciprocals.

 9. One way of dividing by a number that wasn't on the reciprocal table
 would be to halve and double (or similar with 3s or 5s) a related

 reciprocal pair until you got the number you wanted. The scribes would
 have needed division to allocate rations and wages, portions of fields,
 canal-water for irrigation, to calculate bartering rates, and to calculate
 the labour and materials needed to build or repair canals and walls.

 10. 5;15 x 5;15 x 27;33 45. A square--correct.
 11. 54 x 57;30 + 2 = 25 52;30. Finding the area of an isosceles triangle--

 correct.

 12. Cuneiform eventually died out under pressure from alphabets like Greek
 and Aramaic. Persia, Greece and Egypt, and later Rome and the
 Sasanian empire, borrowed all sorts of Mesopotamian ideas. The base
 60 place-value system flourished in astronomy for a millennium after
 cuneiform. Some geometrical methods may have survived into the work
 of Heron and Islamic mathematics, but this transmission is less well
 documented. The Classical Mediterranean, including Turkey and
 Egypt, and then Islam and India, were full of mathematical activity in
 the first 1500 years AD.

 Further Reading and Resources
 Background reading for teachers on mathematics in
 Mesopotamia
 Aaboe, A. 1964 Episodes from the Early History of Mathematics (New mathe-

 matical library; 13), Mathematical Association of America. ISBN
 0883856131.

 Hoyrup, J. 1994 'Babylonian Mathematics'. In Grattan-Guinness, I. (Ed.),
 Companion Encyclopedia of the History and Philosophy of the Mathematical
 Sciences, Vol. I, pages 21-29. ISBN 0415037859.
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 Hoyrup, J. 1992 'Mathematics, Algebra, and Geometry'. In Freedman, D.
 (Ed.) The Anchor Bible Dictionary, Vol. IV, pages 601-612, Doubleday.
 ISBN 0385193629.

 Neugebauer, O. 1969 The Exact Sciences in Antiquity (2nd Edn.), Dover.
 ISBN 0486223322.

 Nissen, H. J., Damerow, P. and Englund, R. K. Archaic Bookkeeping: Early
 Writing and Techniques ofEconomic Administration in the Ancient Near East,
 University of Chicago Press. ISBN 0226586596.

 Postgate, J. N. 1994 Early Mesopotamia: Society and Economy at the Dawn of
 History, Routledge. ISBN 0415110327.

 Roaf, M. 1990 Cultural atlas ofMesopotamia and the Ancient Near East, Facts
 on File. ISBN 0816022186.

 Walker, C. B. F. 1987 Cuneiform (Reading the past), British Museum Press.
 ISBN 0714180599.

 Classroom books on Mesopotamia
 Eagle, M. R. 1995 Exploring Mathematics Through History, Ch. 1, Cambridge

 University Press. ISBN 0521456266.
 Hunter, E. C. D. 1994 First Civilizations (Cultural atlas for young people),

 Facts on File. ISBN 0816029768.

 Lumpkin, B. 1995 Multicultural Math and Science Connections, J. Weston
 Walch.

 Moss, C. 1989 Science in Ancient Mesopotamia, Franklin Watts.
 Nuffield Advanced Mathematics 1994 History of Mathematics, Longman.

 ISBN 0582257298.

 Web sites
 Mesopotamian Mathematics, by Duncan Melville at St. Lawrence University:

 http://it.stlawu.edu/dmelvill/mesomath/index.html
 Recommended Reading on the Ancient Near East: Ancient Mesopotamia, by

 Carole Krucoff, Oriental Institute Museum Education Department,
 University of Chicago:

 http://www-oi.uchicago .edu/OI/DEPT/RA/RECREAD/mesobib.html

 Radio programmes
 Programme 1 of The Square on the Pythagoras, a 4-part series on the history

 of mathematics. Producer A. McNaught. First broadcast on BBC Radio
 4, October 1995.

 Programme 1, on early Mesopotamia, of a 20-part series Civilization. Pro-
 ducer M. Diamond. First broadcast on the BBC World Service, February
 1998.

 UK Museums displaying Mesopotamian
 mathematical clay tablets
 The British Museum, Great Russell Street, London WC1B 3DG, in the

 Sackler Gallery of Early Mesopotamia. Tel. 0171 323 8599
 http://www.british-museum.ac.uk/

 The Ashmolean Museum, Beaumont Street, Oxford OX1 2PH, in the
 Drapers' Gallery of the Ancient Near East. Tel. 01865 278000
 http://www.ashmol.ox.ac.uk/
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 Counting in Cuneiform Work Card 1

 Writing numbers in cuneiform

 You can write a 'one' in cuneiform by pressing
 your stylus into the tablet and lifting it up again.

 Don't drag it along the clay or twist it. If you make

 a mistake you can rub it out with your thumb!
 Keep practising until you are confident.

 * How might we write twoa

 * What number is thisa f

 * And thisa "

 * What's the patterna Write all the numerals
 1-9 in cuneiform.

 * Do modern numerals make a pattern like thisa

 Which is more sensible, in your opiniona

 * Why do you think Mesopotamian scribes wrote

 numbers in clay and not on papera How many

 other methods of recording numbers can you
 think ofa

 Counting in Cuneiform Work Card 2

 Bigger numbers
 You now know how write the numerals 1-9 on a

 clay tablet. We could continue this pattern but it

 would become very clumsy, so we introduce a
 new sign for 'ten'. Turn your tablet or stylus 300-

 450 and make a wedge that looks like an arrow-
 head facing left. Practice for a bit.

 * Now guess what 20 looks like.

 * What's this numbera

 * And this onea
 * Choose two other numbers between 1 and 50

 for your neighbour to write. Did they get them

 righta

 The Mesopotamians counted in 60's.

 * Do we still count or measure anything in 60'sa

 * What about other numbersa

 * How could you write 60 on your tableta You're

 not allowed to write six tens! (Why nota)

 Counting in Cuneiform Work Card 3

 Place-value systems
 The Mesopotamians used a place-value system
 to write numbers: numerals to the left are a power

 of sixty bigger than the ones on the right.

 * Does our modern number system use place
 valuea

 * What is this numbera

 * What does 753 look like in base 60 cuneiforma

 We write base 60 in modern notation like this, with

 a space separating each sexagesimal place:

 74s.'2 44 26 40 (160,000)
 SChoose two other large numbers for your

 neighbour to write in base 60 cuneiform.

 Check that they get them right.

 SWhat is the largest number you can write in
 cuneiforma

 SHow can you distinguish between 62 (or 1 02)
 and 3 in cuneiforma

 Counting in Cuneiform Work Card 4

 Zero and negative numbers
 In cuneiform, you leave a space on the tablet to
 show a blank sexagesimal place.

 * Do you think this is a sensible ideaa Whya

 * What happens if the zero needs to come at the
 end of a number, like 12 00a

 * Invent a cuneiform sign for zero, and explain

 why you chose it.

 * Write 432,000 in base 60 cuneiform.

 There is no way of marking negative numbers in
 cuneiform. If you want to deal with numbers less

 than zero you will need to invent a 'negative' sign
 as well.

 SWhat sign would you choose for negativesa

 Whya

 SSet your neighbour some simple additions and
 subtractions to do in cuneiform. Check their

 answers.

 Mathematics in School, September 1998  7
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 Counting in Cuneiform Work Card 5

 Very small numbers

 You've seen that you can write numbers as big as

 you like in cuneiform. How could you write very

 small numbers without inventing new numeralsa

 * What is half of 60a

 a What is a third of 60a

 * What fraction of 60 is 8a

 If we use *to mean no whole numbers,

 * What is this numbera * ff ,, * Give its decimal and fractional equivalents.

 * What is this numbera * " f
 SGive its decimal and fractional equivalents.

 SAsk your neighbour to write some other
 fractions.

 SWhich fractions can't you write in cuneiforma

 Whya

 Counting in Cuneiform Work Card 6

 Multiplication tables

 The Mesopotamian scribes learned their tables off

 by heart. The sign for 'times' is Ir" but there
 is no sign for'equals'.

 * Write a three-times table up to 20 in cuneiform.

 * Complete this line from a multiplication table:

 " Fill in the missing part of this line:

 Cuneiform times tables ended with multiplications

 by the numbers 20, 30, 40, and 50.

 * Add the lines for 30, 40, and 50 to your three-

 times table. What pattern do the answers
 makea

 * Work out 3 x 1 34 using your table. How did

 you do ita Was your method the same as your

 neighbour'sa
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 Doing multiplication
 The Mesopotamian scribal students did not write

 fF"7-'times' every time they did a multiplication.
 Instead, they drew a vertical line on their tablet,

 and put the numbers to be multiplied on the left of

 it and the answer to the right, like this (4 x 8 = 32):

 * Try this multiplication:

 * Write out and solve 23 x 14 in base 60

 cuneiform.

 a Give your neighbour a difficult multiplication to
 do. Check their answer.

 * Why did Mesopotamian scribes need to

 multiplya What practical uses does it havea
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 Reciprocals
 'Reciprocal' is another word for the inverse of a
 number.

 " What is the answer when you multiply a pair of

 reciprocals togethera

 * What is the modern base 10 reciprocal of 3a

 * What is the base 60 reciprocal of 3a

 * Does every number have a reciprocala

 Look at the pairs of reciprocals in Fig. 11.

 * What number patterns can you detect on the
 tableta

 * Why is 7 missinga

 * Which other numbers are missinga Whya

 Should any be added to the tablea

 SWhy do you think that 1 04 and 1 21 have
 been included at the end of the tablea
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 Dividing
 The Mesopotamian scribes thought of division as

 multiplication by a reciprocal. To divide 1 25 by
 15, for instance, they would find the reciprocal of

 15 and then multiply it by 1 25. They wrote the

 reciprocal next to its pair:

 1 25 +15 =
 1 25 x 0;04 =

 1 00 x 0;04 = 4
 + 25 x 0;04 = 1;40

 = 5;40

 Divide 1 04 by 16, by finding the reciprocal.

 Choose a number on the standard reciprocal

 table, and use it to set a division problem for

 your neighbour. Check their answer.

 How could you divide by a number that wasn't

 on the reciprocal tablea

 When would the Mesopotamian scribes have

 needed to do divisiona What practical uses
 does it havea
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 Deciphering a tablet (1)
 This tablet was written nearly 4,000 years ago by
 a trainee scribe.

 * Can you read the numbersa

 * What problem was the scribe trying to solvea
 Did they get it righta

 Counting in Cuneiform Work Card 11

 Deciphering a tablet (2)
 This tablet was written nearly 4,000 years ago by
 a trainee scribe.

 * Can you read the numbersa

 * What problem was the scribe trying to solvea

 Did they get it righta

 Counting in Cuneiform Work Card 12

 After cuneiform

 People stopped writing cuneiform about 2,000
 years ago.

 * Why might this have happeneda

 * Which neighbouring cultures might have
 borrowed mathematics and other ideas from

 Mesopotamiaa

 * Which parts of Mesopotamian mathematics
 survived after cuneiforma

 * Was the Middle East an important place for
 mathematics after cuneiforma

 * Find out what you can about the fiscovery of
 ancient Mesopotamia and cuneiform.
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